NTEC

For more information, please contact the following offices.

NIPPON THERMOENER CO., LTD. Headquarters: 3-2-10 (Shirokane Tokyo 108-0071 Japan Tet: +81-3-6408-8251 (switchbo

Atsugi sales office

Hokkaldo branch office Sapporo Branch
 Koriyama sales office
 Yokohama branch
 Utsunomiya sales office

 TEL+81-24-990-1852
 TEL+81-45-948-3911
 TEL+81-28-613-0331
 TEL+81-11-789-5281 Morioka branch
 TEL-81-166-21-5770
 Akita sales office
 TEL+81-186-82-336
 TEL+81-48-22-1911

 Kushirova sales office
 TEL+81-81-62-15770
 Akita sales office
 Chiba branch
 Matsumoto sales office
 TEL+81-81-27-350-7220

 Kushirova sales office
 TEL+81-81-82-350-721
 TEL+81-82-21-911
 TEL+81-263-48-3815
 Hokuriku branch

 Kushiro sales office
 TEL+81-18-887-5630
 TEL+81-43-235-0071
 TEL+81-263-48-3815
 Hokuriku branch

 TEL+81-154-31-921
 Suthem Kanto branch office
 Mito sales office
 Nagano sales office
 TEL+81-17-62-34

 Hakodate sales office
 Tokyo branch
 TEL+81-251-29-244-5720
 TEL+81-26-286-034
 T943as office

 TEL+81-138-87-5001
 TEL+81-36408-8260
 Tsukuba sales office
 Niligata branch
 TEL+81-76-421-11

 Tohku branch office
 TeL+81-36408-8260
 Tsukuba sales office
 Niligata branch
 TEL+81-76-421-11

 Sendai Branch
 TEL+81-25-83701
 TEL+81-25-83701
 TEL+81-25-83-0171
 Shizuka branch

 TEL+81-22-244-5181
 Yamaashi sales office
 TEL+81-25-820-0171
 Shizuka branch
 TEL+81-54-245-02

 Yamagata sales office
 TEL+81-55-242-2570
 TEL+81-48-660-2331
 TEL+81-55-840-02
 TEL+81-53-464-02
 Yamagata sales office TEL+81-55-242-2570 TEL+81-48-660-2331 TEL+81-23-629-7378

AFFILIATES

NTEC Chemical CO., LTD. NTEC Engineering CO., LTD. NTEC Service CO., LTD. NIPPON THERMOENER (THAILAND) CO., LTD. TEL+66-(0)2-653-0660

Takasaki branch

Chubu branch office	Kansal branch office	Chugoku branch office
Nagoya Branch	Osaka Branch	Chugoku Branch
TEL+81-52-509-5211	TEL+81-6-6488-2233	TEL+81-82-503-1606
Mie sales office	Takamatsu sales office	Okayama sales office
TEL+81-59-213-5980	TEL+81-87-864-5755	TEL+81-86-800-7700
Hokuriku branch	Kobe branch	Sanin sales office
TEL+81-76-223-4001	TEL+81-78-579-6150	TEL+81-859-34-6577
Toyama sales office	Himeji sales office	Yamaguchi sales office
TEL+81 26 421 1121	TEL+91-70-291-6227	TEL+91-82-972-2666
Shizuoka branch	Minami-Osaka branch	Kyushu branch office
TEL+81-54-245-0253	TEL+81-72-226-5165	Kyushu Branch
Hamamatsu sales office	Kyoto branch	TEL+81-92-711-1511
TEL+81-53-464-0253	TEL+81-75-935-2541	Kitakyushu sales office

s: 3-2-10 (Shirokanedai Building), Shirokanedai, Minato-ku,

pard number) Eax: +81-3-6408-8278

ttps://www.n-thermo.co.jr
 Oita sales office
 Kyoto plant

 TEL+81-97-554-2322
 TEL+81-75-935-2500
 Kumamoto sales office Kanto plant TEL+81-96-328-9811 TEL+81-29-833-6110 Kagoshima sales office TEL+81-99-255-3801

• Please note that the descriptions are subject to change without prior notice.

GTL Series / GTLH (Latent Heat Recovery Type)

NIPPON THERMOENER CO., LTD.

Vacuum Type Water Heater

Super Vacotin Heater

Vacuum-type highly-efficient gas-fired water heater realizing energy savings

Super Vacotin Heater GTL series / GTLH (Latent Heat Recovery Type)

High efficiency Latent heat recovery type GTLH

Turndown ratio

Proportional control combustion format

Space conserving design & split delivery^{*} !!

It is possible to split the latent heat recovery device from the main unit of the vacuum type water heater when delivering to the installation site, making installation easy even in locations with little open space leading to the installation location.

NOx emissions=60ppm or lower (converted at O₂=0%)

Uses a high-quality low NOx burner that adopts the divided flame and self-recirculating combustion methods (in case of LNG)

Subsequent euipping of the latent heat recovery device and by-passing are possible* !!

Through our unique design, it is possible to equip the latent heat recovery device to installed units, thereby increasing the freedom when selecting equipment. Also, water and exhaust gas by-passes are possible, which allows the running method to be selected. * In case of GTLH

Vacuum Type Water Heater

From latent heat recovery device

- There is no air in the boiler, and the unit is completely hermetically sealed from the outside environment The depressurization steam box is kept at a pressure below atmospheric pressure
- The heat medium water boils immediately after heating with the burner is started Steam with the same temperature as the heat medium water is generated
- Steam generated in the boiler body condenses on the surface of the heat exchanger located inside the depressurization steam box. and the condensation indirectly heats water
- Depressurized steam condenses into water droplets and becomes heat medium water again
- The level of heat medium water never changes, so there is no fear of heating an empty boiler without ever needing to add additional water

Latent Heat Recovery Device (GTLH)

- ■Heat efficiency of 105% is achieved through the recovery of latent heat!!
- Realization of high heat efficiency by efficiently removing drain water!! ■ Improved energy efficiency!! Smaller environmental footprint!!
- Because the combustion gas condensate generated when recovering the latent heat is acdic, the latest heat recovery device is constructed
- with stainless steel and is also equipped with a neutralizer unit Capable of adding on or bypassing a latent heat recovery device!!

Exhaust gas bypass dumper

Exhaust gas

Super Vacotin Heater GTL series / GTLH (Latent Heat Recovery Type)

GTLH

Realized extremely high efficiency with a boiler body efficiency of 95% Proportional control combustion format Turndown ratio 5:1 (20%)

By re-examining the structure and further optimizing the heat-carrying water pipes, a thermal efficiency of 95% during a rated load operation has been realized. With the turndown ratio of 5:1* and proportional control combustion format, these products eliminate the need to stop the burner until the load factor falls to 20% of the rated load, making it possible to reduce losses in efficiency resulting from repeatedly stopping and starting the burner and realize a partial load efficiency of 96% or more (when the load factor is 20%).

* The turndown ratio represents a ratio between the rated (maximum) combustion capacity and minimum combustion capacity. When it is 5:1. the combustion capacity can be reduced to 20%.

Images of flame at various combustion load factors

GTLH

NOx emissions=60ppm or lower (converted at $O_{2}=0\%$)

A high-quality low NOx burner that adopts the divided flame and self-recirculating combustion methods is used as standard. Reducing emissions of NOx gas that causes acid rain and photochemical smog, these water heaters provide superior environmental performance.

Divided flame burner

Equipped with the new and highly-functional micro-computer as standard

Improved control functions, backlit LCD, additional display information, selectable tiered display, multiple remote controls, longer life, improved temperature resolution, communication function, operating data recording function, improved scheduled operating function, additional operating functions

* The high-grade remote control (option) enables individual, central, and multiple-unit (up to three units) controls.

Improved heat conductivity with water pipes having alternately arranged fins

The fins arranged alternately prevent condensed water from obstructing heat transfer, realizing improvement in heat conductivity.

GTL model

Generated condensed water accumulates between fins and obstructs the flow of exhaust gas (reducing the exhaust gas flow rate and obstructing heat transfer)

transfer

Space conserving design & split delivery* !! Subsequent euipping of the latent heat recovery device and by-passing are possible* !!

It is possible to split the latent heat recovery device from the main unit of the vacuum type water heater when delivering to the installation site, making installation easy even in locations with little open space leading to the installation location. * In case of GTLH

GTI

GTLE

The world first vacuum type water heater realizing a thermal efficiency of 105%* through latent heat recovery

The latent heat recovery device realizes a thermal efficiency of 105%* by adjusting the flow of the internal exhaust gas and efficiently removing drain water. * In case of the LNG type (103% for the propane type)

Down-flow system for exhaust gas Highly resistant to acid drain water providing stable heat recovery

The flow helps condensed water fall down more easily, enabling stable heat recovery. Using stainless steel material highly resistant to corrosion due to acid and a built-in neutralizer unit, this device is well-prepared for use with drain water.

Note for Consideration

The GTLH can realize 105% high efficiency, but a moisture concentration in exhaust gas becomes very high because of latent heat recovery, and mist becomes acid. For this reason, white smoke is generated as an outer temperature decreases, and automobiles and steel products placed near the flue discharge opening may be corroded by mist. If this may pose a problem, it is recommended to use the 95%-efficiency GTL first to confirm its energy conservation performance, and then, if the GTLH is reuired, install an add-on latent heat recovery device.

04 SUPER VACOTIN HEATER Series Catalog

With the fins arranged alternately, condensed water passes between the fins to be discharged, which prevents obstruction of heat

This image is for illustrative purposes only.

PRODUCT LINEUP GTL / HGTL

GTL/HGTL (Standard spec. / High-temperature spec.)

Туре 300 400 500 630 800 349 581 930 Boiler body output kW 465 733 8.4 9.8 12.7 14.0 Heating surface area m' Heat efficiency 367 489 kW 612 772 979 Max combustion capacity (input) 68.4 .ଟ୍ର LNG m³ (N)/h 32.6 43.4 54.3 86.8 m³ (N)/h 14.1 18.8 23.5 29.6 37.6 Propane kg/h 28.5 38.0 47.5 59.9 76.0 Three-phase, AC200V, 50/60Hz Power source 1.5 Blower motor kW Blower motor 1.0 2.2 kW 0.3 Control system Proportional + ON-OFF control 물퓔 Fuel inlet (Union) 40 50 65[50] 통 Exhaust gas outlet 300 350 450 φmm 3 .倍. Exhaust gas drain outlet Α 25 Heat exchanger nucture SUS444 / MPa 0.69 SUS444 / U-shape multitubular flange type heat exchanger

1,240 kg

300A

349

L

Type

Maximum working pressure

roduct weight including heat medium water)

Maximum continuous output kW

Hot water flow amount (60→80°C) L/h

Pressure loss for same as above kPa 32.4

Amount of water held by heat exchanger L 12.2

Hot water inlet / outlet (flange) A 50 (JIS10K)

265 310 390 The value in [] is specification of the propane type.

500A

581

39.2

1,480 1,735

0.49

1,965

380

800A

930

40 000

16.7

35.1

630A

733

31,500

10.8

35.1

80 (JIS5K)

GTL-300 to 800 1 circuit (for hot water supply)

Item	Туре	300A	400A	500A	630A	800A		
Maximum continuous output	kW	349	465	581	733	930		
Hot water flow amount (20→65°C)	L/h	7,500*	8,890	11,110	14,000	17,780		
Pressure loss for same as above	kPa		1.0		2.0	2.9		
Amount of water held by heat exchanger	L	10.4	13	.2	21.7	24.2		
Hot water inlet / outlet (flange)	Α	65 (JIS10K)	() 80 (JIS5K)					

*: The temperature condition for 300 type is 20 -> 60°C.

GTL-300 to 800 1 circuit (for heating)

Item	Туре	300A	400A	500A	630A	800A
Maximum continuous output	kW	349	465	581	733	930
Hot water flow amount (55→70°C)	L/h	20,000	26,700	33,300	42,000	53,300
Pressure loss for same as above	kPa	5.4	3.9	5.9	10.8	19.6
Amount of water held by heat exchanger	L	10.4	13.2	13.2	21.7	24.2
Hot water inlet / outlet (flange)	Α	65 (JIS10K)		80 (.	JIS5K)	

GTL-300 to 800 2 circuits

Item		Туре	300B	400B	500B	630B	800B
_	Maximum continuous output	kW	349	465	581	733	930
ter	Hot water flow amount (55→70°C)	L/h	20,000	26,700	33,300	42,000	53,300
wai	Pressure loss for same as above	kPa	5.4	3.9	5.9	10.8	19.6
t	Amount of water held by heat exchanger	L	10.4	13.2	13.2	21.7	24.2
-	Hot water inlet / outlet (flange)	Α	65 (JIS10K)		80 (J	IS5K)	
_	Maximum continuous output	kW	349	465	581	733	930
erl	Hot water flow amount (20→65°C)	L/h	6,670	8,890	11,110	14,000	17,780
vat	Pressure loss for same as above	kPa	6.4	3.9	5.9	11.8	20.6
ð	Amount of water held by heat exchanger	L	8.8	13.0	13.0	13.2	21.7
т	Hot water inlet / outlet (flange)	Α	50 (JIS10K)		65 (J	IS5K)	

GTL-300 to 800 3 circuits

Item	1	Туре	300C	400C	500C	630C	800C
Ļ.	Maximum continuous output	kW	174	233	291	366	465
-	Hot water flow amount (55→70°C)	L/h	10,000	13,300	16,700	21,000	26,600
vate	Pressure loss for same as above	kPa	5.4	3.9	5.9	10.8	19.6
t v	Amount of water held by heat exchanger	L	5.2	6.6	6.6	10.85	12.1
Ĭ	Hot water inlet / outlet (flange)	Α	40 (JIS10K)		50 (J	IS5K)	
5	Maximum continuous output	kW	349	465	581	733	930
-	Hot water flow amount (25→50°C)	L/h	10,000*	16,000	20,000	25,200	32,000
vate	Pressure loss for same as above	kPa	5.4	5.9	8.8	14.7	27.5
t v	Amount of water held by heat exchanger	L	5.2	6.6	6.6	10.85	12.1
Ŧ	Hot water inlet / outlet (flange)	Α	40 (JIS10K)		50 (J	IS5K)	
_	Maximum continuous output	kW	349	465	581	733	930
e	Hot water flow amount (20→65°C)	L/h	6,670	8,890	11,110	14,000	17,780
vat	Pressure loss for same as above	kPa	6.4	3.9	5.9	11.8	20.6
ot	Amount of water held by heat exchanger	L	8.8	13.0	13.0	13.2	21.7
т	Hot water inlet / outlet (flange)	Α	50 (JIS10K)		65 (J	IS5K)	

*The temperature condition for 300 type is 20 -> 50°C.

HGTL-300 to 800 High to -

HGTL-300 to 800 High-temperature spec....1 circuit (for heating)

400A

465

15,000 20,000 25,000

21.6

13.2 21.7

65 (JIS5K)

	31L-300 to c	500	Hign-t	empera	ature sp	ec 2	circuits
Item		Туре	300B	400B	500B	630B	800B
_	Maximum continuous output	kW	349	465	581	733	930
fer	Hot water flow amount (60→80°C)	L/h	15,000	20,000	25,000	31,500	40,000
wai	Pressure loss for same as above	kPa	32.4	21.6	39.2	10.8	16.7
đ	Amount of water held by heat exchanger	L	12.2	13.2	21.7	35.1	35.1
-	Hot water inlet / outlet (flange)	Α	50 (JIS10K)	65 (J	IS5K)	80 (J	IS5K)
_	Maximum continuous output	kW	349	465	581	733	930
er	Hot water flow amount (20→65'C)	L/h	6,670	8,890	11,110	14,000	17,780
vat	Pressure loss for same as above	kPa	6.4	3.9	5.9	11.8	20.6
d d	Amount of water held by heat exchanger	L	8.8	13.0	13.0	13.2	21.7
Í	Hot water inlet / outlet (flange)	50 (JIS10K)		65 (J	IS5K)		

HGTL-300 to 800 High-temperature spec....3 circuits

Item		Туре	300C	400C	500C	630C	800C
-	Maximum continuous output	kW	174	233	291	366	465
-	Hot water flow amount (60→75°C)	L/h	10,000	13,300	16,700	15,750*1	20,000*1
vate	Pressure loss for same as above	kPa	6.4	4.9	8.8	10.8	16.7
5	Amount of water held by heat exchanger	L	6.1	6.6	10.85	17.55	17.55
Ĭ	Hot water inlet / outlet (flange)	Α	40 (JIS10K)		50(J	IS5K)	
5	Maximum continuous output	kW	349	465	581	733	930
1	Hot water flow amount (40→60'C)	L/h	15,000	20,000	25,000	15,750*2	20,000*2
/ate	Pressure loss for same as above	kPa	12.7	9.8	18.6	10.8	16.7
5	Amount of water held by heat exchanger	L	6.1	6.6	10.85	17.55	17.55
¥	Hot water inlet / outlet (flange)	Α	40 (JIS10K)		50(J	IS5K)	
_	Maximum continuous output	kW	349	465	581	733	930
er	Hot water flow amount (20→65'C)	L/h	6,670	8,890	11,110	14,000	17,780
vat	Pressure loss for same as above	kPa	6.4	3.9	5.9	11.8	20.6
ъ.	Amount of water held by heat exchanger	L	8.8	13.0	13.0	13.2	21.7
T	Hot water inlet / outlet (flange)	Α	50 (JIS10K)		65 (J	IS5K)	
		*1 : Th	ne temperatu	re condition	for 630 and	800 types i	s 60 -> 80°C.

*2: The temperature condition for 630 and 800 types is 30 -> 70°C. or operating other gas equipment. Supply gas pressure LNG: 2.0kPa Propane: 2.8kPa

	The freet efficiency value is Caulitated up the near uses scheme provided in JIS B 8222-1993. The margins of error are as follows: Heat efficiency error: arts: n: a35% Fuel consumption and maximum combustion amount (input) are computed on the lower-heating-value standard, ING: 40.6MJ/m ² (N). Propane: 93.7MJ/m ² (N), 46.4MJ/kg Install the gas pipe property so that the supplied gas pressure can be secured when stopping/running the heater	or operating once gas equipment. Supply gas pressure LNG: 2014a Propane: 2.8kPa exchanger, please contact our company. Beoler body outpease contact our company. Beoler body outpeak that company contacting elec- Performance of Hot Water Generators and Hot Water Boilers' by Japan Heating Industrial Association.
--	--	--

Output · N: LNG GTL-DD P: Propane -- S: Outdoor type ··· A: 1 circuit --- H: High-temperature spec.

hor pitch)

Turne (Carda			6		-	-	~				K			N					C	-			Ex	haust pi	ipe
Type/Code	A	В	C		E	F	G	н	1	J	ĸ	L	IM		0	P	Q	ĸ	5		0	v	фа	φb	P.C.D.
GTL-300	770	2,096	1,711	1,228	1,238	1,600	730	260	48	176	165	205	2,004	982	62	30	1,617	245	50	1,200	125	574	400	300	360
GTL-400	820	2,246	1,780	1,269	1,282	1,668	780	285	48	182	190	240	2,154	1,057	62	30	1,685	246	50	1,500	134	574	450	350	405
GTL-500	820	2,530	1,780	1,269	1,282	1,668	780	285	48	182	190	240	2,438	1,199	62	30	1,685	246	37	1,500	134	574	450	350	405
GTL-630	820	2,845	1,779	1,352	1,365	1,663	780	285	128	182	190	240	2,717	1,338.5	100	28	1,750	286	50	1,500	132	678	550	450	500
GTL-800	820	2,845	1,779	1,352	1,365	1,663	780	285	128	182	190	240	2,717	1,338.5	100	28	1,750	286	50	1,700	132	678	550	450	500
Note: The externa	ote: The external outline drawing and dimension table show 2-circuit type standard specifications.																								

HGTL-300 to 800 [Indoor, high-temperature spec.]

6-*ф*19

Turne (Code		Б	6		-	-	6	ц			V			N	_	р		р	c	Ŧ		V	Ex	haust pi	ре
Type/Code	A .	P			-	- F	G	п		J J		L		IN	0	P		ĸ	5		0	v	фа	φb	P.C.D.
HGTL-300	770	2,096	1,711	1,238	1,238	1,600	730	260	48	156	125	205	2,004	982	62	30	1,617	245	50	1,700	304	574	400	300	360
HGTL-400	820	2,246	1,780	1,282	1,282	1,668	780	285	48	156	140	240	2,154	1,057	62	30	1,685	246	50	1,500	134	574	450	350	405
HGTL-500	820	2,530	1,780	1,282	1,282	1,668	780	285	48	156	140	240	2,438	1,199	62	30	1,685	246	37	1,500	134	574	450	350	405
HGTL-630	820	2,845	1,779	1,352	1,365	1,663	780	285	128	182	190	240	2,717	1,338.5	100	28	1,750	286	50	2,300	649	678	550	450	500
HGTL-800	820	2,845	1,779	1,352	1,365	1,663	780	285	128	182	190	240	2,717	1,338.5	100	28	1,750	286	50	2,300	649	678	550	450	500
Noto: The outerns	l outlino	drawing	and dime	ncion tol	blo chow	2 circuit	huno cho	dard co	scificatio																

Power con hole (\$\$30)

Note: The external outline drawing and dimension table show 2-circuit type standard specifications

er withdrawal space

Unit: mm

		N	_	D	~	Б	ç	-		V	Ex	haust p	ipe
	IVI	IN	0	P	Q	ĸ	5		0	v	фа	φb	P.C.D.
	62	30	1,707	244	50	1,200	90	10	190	232	400	300	360
	62	30	1,775	246	50	1,200	90	10	160	222	450	350	405
	62	30	1,775	246	37	1,200	90	10	160	222	450	350	405
;	100	28	1,839	286	50	1,500	92	8	265	327	550	450	500
5	100	28	1,839	286	50	1,700	92	8	265	327	550	450	500

PRODUCT LINEUP GTLH

GTLH-500 Latent Heat Recovery Type

		Туре	500							
Item			LNG	Propane						
Boile	er body output	kW	58	31						
Heat	ing surface area	m'	12	.7						
Heat	efficiency	%	105	103						
Max c	ombustion capacity (input)	kW	553	564						
tion	LNG	m³ (N)/h	49.1	—						
Fuel sump	Propane	m³ (N)/h	—	21.7						
con		kg/h	_	43.8						
Pow	er source		Three-phase, AC	200V, 50/60Hz						
ility tric ver	Blower motor	kW	1.	5						
Fac	Control box	kW	0.	3						
Con	trol system		Proportional + 0	ON-OFF control						
ing leter	Fuel inlet (Union)	A	4	0						
diam	Exhaust gas outlet	φmm	30	00						
Dipe Dipe	Exhaust gas drain outlet	A	2	5						
Heat	exchanger	Material/ Structure	SUS444 / U-shape multitubula	r flange type heat exchanger						
Maxir	num working pressure	MPa	0.4	19						
Produ (inclu	ct weight ding heat medium water)	kg	2,5	25						
Amou	nt of heat medium water	L	39	90						

GTLH-500 Latent Heat Recovery Type --- 1 circuit (for hot water)

Item	Туре	GTLH-500A	
Maximum continuous output	kW	581	
Hot water flow amount (5→65°C)	L/h	8,330	
Pressure loss for same as above	kPa	22.5	
Amount of water held by heat exchanger	L	39.6	
Hot water inlet / outlet (flange)	Α	50(JIS5K)	

GTLH-500 Latent Heat Recovery Type ... 2 circuits

Item		Туре	GTLH-500B
Hot water I	Maximum continuous output	kW	581
	Hot water flow amount (55→70°C)	L/h	33,300
	Pressure loss for same as above	kPa	5.9
	Amount of water held by heat exchanger	L	13.2
	Hot water inlet / outlet (flange)	Α	80(JIS5K)
Hot water II	Maximum continuous output	kW	581
	Hot water flow amount (5→65'C)	L/h	8,330
	Pressure loss for same as above	kPa	22.5
	Amount of water held by heat exchanger	L	39.6
	Hot water inlet / outlet (flange)	Α	50(JIS5K)

GTLH-500 Latent Heat Recovery Type --- 3 circuits

Item		Туре	GTLH-500C
ot water H1	Maximum continuous output	kW	291
	Hot water flow amount (55→70°C)	L/h	16,700
	Pressure loss for same as above	kPa	5.9
	Amount of water held by heat exchanger	L	6.6
Ť	Hot water inlet / outlet (flange)	Α	50(JIS5K)
ot water I-2	Maximum continuous output	kW	581
	Hot water flow amount (25→50'C)	L/h	20,000
	Pressure loss for same as above	kPa	8.8
	Amount of water held by heat exchanger	L	6.6
Ť	Hot water inlet / outlet (flange)	Α	50(JIS5K)
ot water II	Maximum continuous output	kW	581
	Hot water flow amount (5→65 ['] C)	L/h	8,330
	Pressure loss for same as above	kPa	22.5
	Amount of water held by heat exchanger	L	39.6
エ	Hot water inlet / outlet (flange)	Α	50(JIS5K)

The heat efficiency value is calculated by the heat loss scheme provided in JIS B 8222-1993.
 The margins of error are as follows: Heat efficiency error: ±1%

neat emclency error: ±1.% Combustion capacity error: ±3.5% ●ruel consumption and maximum combustion amount (input) are computed on the lower-heating-value standard. LNG: 40.6MJ/m³ (N) Propane: 93.7MJ/m³ (N), 46.4MJ/kg ●install the gas pipe properly so that the supplied gas pressure can be secured when stopping/running the heater or operating

Instaul the gas pipe properly so that the supplied gas pressure can be secured when stopping/running the neater or op other gas equipment. Supply gas pressure LNG: 2.0kPa Propane: 2.8kPa If you pass water other than tap water through the heat exchanger, please contact our company. Boller body output, fuel consumption, and facility electricity conform to JIS 8 8417-2000 and "Guideline for Indicating Performance of Hot Water Generators and Hot Water Boilers" by Japan Heating Industrial Association. The 3-circuit type only supports indoor application.

Note: The external outline drawing shows dimensions of the 2-circuit type

PRODUCT INFO

Selection of material for heat exchanger

The heat exchanger material needs to be selected in accordance with the following criteria. When you use water having quality that does not meet the following criteria, please consult with the distributor or our sales representative.

Criteria of water quality for the standard 2 Other stainless steel heat exchanger

Items	Criteria	
Hydrogen ion concentration	(25℃) pH	6.5 to 8.5
Electrical conductivity	(25℃) E	50mS/m or less
Chloride ion Fluorine compound	CI⁻ F	200mg/l or less in total
Sulphate ion	S04-	100mg/l or less
Residual chlorine	CI	1.0mg/l or less
Iron	Fe	1.0mg/l or less
Sulfide ion	S ²⁻	Not detected
Ammonium ion	NH ⁴⁺	1.0mg/l or less

* When using water with quality other than the above, please contact the distributor from which you have purchased the product

or our service division

Prepare for chemical cleaning when using ground water with 100mg/l or more of total hard CaCO₃, 50mg/l or more of ionic silica SiO_2 , and 100mg/l or more of acid consumption [PH4.8] since such water causes scales.

- Notes (1) The standard values above are based on the Water Quality Guidelines for Refrigeration & Air-Conditioning Systems (JRA9001).
 - (2) The terms and the units are based on JIS K0101

Latent heat recovery system

The latent heat is heat that water vapor contained in exhaust gas takes out to the external air, and the latent heat recovery represents collecting the heat of water vapor.

Because water vapor becomes condensed water as a result of latent heat recovery, latent heat has been discharged to the air without being recovered and used so far in order to prevent corrosion of the heat exchanger due to condensed water.

The vacuum type water heater with the latent heat recovery function, "GTLH", adopted a stainless steel heat exchanger that is resistant to corrosion and enabled recovery of latent heat of water vapor contained in exhaust gas, realizing an extremely high efficiency that reaches 105%.

By using the neutralizer unit, GTLH is well-prepared for acid drain water that is generated as condensed water.

Latent heat recovery Reuses heated exhaust gas that has not been utilized so far. Exhaust gas is used to heat feedwater at the heat exchanger located inside the latent heat recovery device, and water vapor contained in the exhaust gas is cooled and condenses on the heat exchanger Latent heat is recovered in this process

SYSTEM CONFIGURATION

Notes: *1 Select an appropriate pump within the range between the maximum and minimum flow in reference to the output examination data. *2 Install a by-pass valve when the selected pump exceeds the maximum flow *3 Set the height of the expansion tube higher than the head of the circulating pump

*4 Connect the pipe to the inlet of the Vacotin heater from the low-temperature part of the hot water tank or the makeup water pipe.

• Refer to the output examination data for the output of heat exchanger

• If the pipe may have dirt or rust, install a straine

• The hot water tank cannot be used as a pressure vessel. This is an advantage for the tapping temperature of the Vacotin heater being kept under 100°C even if the water head height exceeds 10m